Genesis Panthesis The Sci-Phi Sector
SciencePhysicsChemistryOrganic Chemistry

Approaches to Abiogenesis

The Origin of Life

Introduction

The most crucial entity in and most basal unit of evolution is the replicator (Zachar, 2010).

“Replicator First” Approaches

RNA World hypothesis — Since the 1982 discovery of ribozymes (Kruger et al.) proved that RNA had catalytic properties, and could therefore “act both as information carrier and as catalyst” (Alberts et al., 2002), resolved the DNA-protein “chicken & egg” paradox by demonstrating that RNA could act as both “chicken” and “egg” (Bernhardt, 2012; Sankaran, 2013), the replicator-first approach has quite naturally come to be dominated by the “RNA World” hypothesis (von Meijenfeldt, 2013) and this has only been reinforced by the now much-expanded catalytic repertoire of RNA and the import thereof with regard to key cellular reactions (Doudna & Cech, 2002) “which can be viewed as molecular fossils of an earlier world,” meaning we never fully transitioned out of the RNA World (Alberts et al., 2002). Evidence indicating that the common ancestor of the Archaea and the Bacteria possessed an RNA-based genome (Leipe & al., 1999) and only after divergence each separately acquired DNA from DNA viruses, in which DNA first arose (Leipe & al., 1999; Forterre, 2002), has further reinforced this hypothesis.


“Metabolism First” Approaches



Related
Panspermia
LUCA: The Last Universal Common Ancestor
Mitochondrigeny
Eukaryogenesis
From Progressive Evolution to Opportunistic Evolution
The New Spontaneous Generation? "Early-Complexity" Hypotheses for Primordial Life
X-Philes: Extremophiles and Extremotolerant Organisms